Several factors affect aircraft performance including the atmosphere, aerodynamics, and aircraft icing. Pilots need an understanding of these factors for a sound basis for prediction of aircraft response to control inputs, especially with regard to instrument approaches, while holding, and when operating at reduced airspeed in instrument meteorological conditions (IMC). Although these factors are important to the pilot flying visual flight rules (VFR), they must be even more thoroughly understood by the pilot operating under instrument flight rules (IFR). Instrument pilots rely strictly on instrument indications to precisely control the aircraft; therefore, they must have a solid understanding of basic aerodynamic principles in order to make accurate judgments regarding aircraft control inputs.

Ice-contaminated aircraft have been involved in many accidents. Takeoff accidents have usually been due to failure to deice or anti-ice critical surfaces properly on the ground. Proper deicing and anti-icing procedures are addressed in two other pilot guides, Advisory Circular (AC) 120-58, Pilot Guide: Large Aircraft Ground Deicing and AC 135-17, Pilot Guide: Small Aircraft Ground Deicing.

The pilot of an aircraft, which is not certificated or equipped for flight in icing conditions, should avoid all icing conditions. The aforementioned guides provide direction on how to do this, and on how to exit icing conditions promptly and safely should they be inadvertently encountered.

The pilot of an aircraft, which is certificated for flight in icing conditions can safely operate in the conditions for which the aircraft was evaluated during the certification process but should never become complacent about icing. Even short encounters with small amounts of rough icing can be very hazardous. The pilot should be familiar with all information in the Aircraft Flight Manual (AFM) or Pilot’s Operating Handbook (POH) concerning flight in icing conditions and follow it carefully. Of particular importance are proper operation of ice protection systems and any airspeed minimums to be observed during or after flight in icing conditions. There are some icing conditions for which no aircraft is evaluated in the certification process, such as super-cooled large drops (SLD). These subfreezing water droplets, with diameters greater than 50 microns, occur within or below clouds and sustained flight in these conditions can be very hazardous. The pilot should be familiar with any information in the AFM or POH relating to these conditions, including aircraft-specific cues for recognizing these hazardous conditions within clouds.

The information in this section is an overview of the hazards of aircraft icing. For more detailed information refer to AC 91-74, Pilot Guide: Flight in Icing Conditions, AC 91-51, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, AC 20-73, Aircraft Ice Protection and AC 23.143-1, Ice Contaminated Tailplane Stall (ICTS).

The Wing

To understand aerodynamic forces, a pilot needs to understand basic terminology associated with airfoils. Figure 1 illustrates a typical airfoil.

Aerodynamic Factors
The airfoil

The chord line is the straight line intersecting the leading and trailing edges of the airfoil, and the term chord refers to the chord line longitudinal length (length as viewed from the side).The mean camber is a line located halfway between the upper and lower surfaces. Viewing the wing edgewise, the mean camber connects with the chord line at each end. The mean camber is important because it assists in determining aerodynamic qualities of an airfoil. The measurement of the maximum camber; inclusive of both the displacement of the mean camber line and its linear measurement from the end of the chord line, provide properties useful in evaluating airfoils.

Contents