The instrument pilot must understand the relationship and differences between several factors that affect the performance of an aircraft in flight. Also, it is crucial to understand how the aircraft reacts to various control and power changes, because the environment in which instrument pilots fly has inherent hazards not found in visual flying. The basis for this understanding is found in the four forces acting on an aircraft and Newton’s Three Laws of Motion.

Relative Wind is the direction of the airflow with respect to an airfoil.

Angle of Attack (AOA) is the acute angle measured between the relative wind, or flightpath and the chord of the airfoil. [Figure 1]

Aerodynamics factor
Figure 1. Angle of attack and relative wind
Flightpath is the course or track along which the aircraft is flying or is intended to be flown.

The Four Forces

The four basic forces [Figure 2] acting upon an aircraft in flight are lift, weight, thrust, and drag.

Aerodynamics factor
Figure 2. The four forces and three axes of rotation


Lift is a component of the total aerodynamic force on an airfoil and acts perpendicular to the relative wind. Relative wind is the direction of the airflow with respect to an airfoil. This force acts straight up from the average (called mean) center of pressure (CP), which is called the center of lift. It should be noted that it is a point along the chord line of an airfoil through which all aerodynamic forces are considered to act. The magnitude of lift varies proportionately with speed, air density, shape and size of the airfoil, and AOA. During straight-and-level flight, lift and weight are equal.


Weight is the force exerted by an aircraft from the pull of gravity. It acts on an aircraft through its center of gravity (CG) and is straight down. This should not be confused with the center of lift, which can be significantly different from the CG. As an aircraft is descending, weight is greater than lift.


Thrust is the forward force produced by the powerplant/propeller or rotor. It opposes or overcomes the force of drag. As a general rule, it acts parallel to the longitudinal axis.


Drag is the net aerodynamic force parallel to the relative wind and is generally a sum of two components: induced drag and parasite drag.

Induced Drag

Induced drag is caused from the creation of lift and increases with AOA. Therefore, if the wing is not producing lift, induced drag is zero. Conversely, induced drag decreases with airspeed.

Parasite Drag

Parasite drag is all drag not caused from the production of lift. Parasite drag is created by displacement of air by the aircraft, turbulence generated by the airfoil, and the hindrance of airflow as it passes over the surface of the aircraft or components. All of these forces create drag not from the production of lift but the movement of an object through an air mass. Parasite drag increases with speed and includes skin friction drag, interference drag, and form drag.

Skin Friction Drag

Covering the entire “wetted” surface of the aircraft is a thin layer of air called a boundary layer. The air molecules on the surface have zero velocity in relation to the surface; however, the layer just above moves over the stagnant molecules below because it is pulled along by a third layer close to the free stream of air. The velocities of the layers increase as the distance from the surface increases until free stream velocity is reached, but all are affected by the free stream. The distance (total) between the skin surface and where free stream velocity is reached is called the boundary layer. At subsonic levels the cumulative layers are about the thickness of a playing card, yet their motion sliding over one another creates a drag force. This force retards motion due to the viscosity of the air and is called skin friction drag. Because skin friction drag is related to a large surface area its affect on smaller aircraft is small versus large transport aircraft where skin friction drag may be considerable.

Interference Drag

Interference drag is generated by the collision of airstreams creating eddy currents, turbulence, or restrictions to smooth flow. For instance, the airflow around a fuselage and around the wing meet at some point, usually near the wing’s root. These airflows interfere with each other causing a greater drag than the individual values. This is often the case when external items are placed on an aircraft. That is, the drag of each item individually, added to that of the aircraft, are less than that of the two items when allowed to interfere with one another.

Form Drag

Form drag is the drag created because of the shape of a component or the aircraft. If one were to place a circular disk in an air stream, the pressure on both the top and bottom would be equal. However, the airflow starts to break down as the air flows around the back of the disk. This creates turbulence and hence a lower pressure results. Because the total pressure is affected by this reduced pressure, it creates a drag. Newer aircraft are generally made with consideration to this by fairing parts along the fuselage (teardrop) so that turbulence and form drag is reduced.

Total lift must overcome the total weight of the aircraft, which is comprised of the actual weight and the tail-down force used to control the aircraft’s pitch attitude. Thrust must overcome total drag in order to provide forward speed with which to produce lift. Understanding how the aircraft’s relationship between these elements and the environment provide proper interpretation of the aircraft’s instruments.

Newton’s First Law, the Law of Inertia

Newton’s First Law of Motion is the Law of Inertia. It states that a body at rest will remain at rest, and a body in motion will remain in motion, at the same speed and in the same direction until affected by an outside force. The force with which a body offers resistance to change is called the force of inertia. Two outside forces are always present on an aircraft in flight: gravity and drag. The pilot uses pitch and thrust controls to counter or change these forces to maintain the desired flightpath. If a pilot reduces power while in straight-and-level flight, the aircraft will slow due to drag. However, as the aircraft slows there is a reduction of lift, which causes the aircraft to begin a descent due to gravity. [Figure 3]

Aerodynamics factor
Figure 3. Newton’s First Law of Motion: the Law of Inertia

Newton’s Second Law, the Law of Momentum

Newton’s Second Law of Motion is the Law of Momentum, which states that a body will accelerate in the same direction as the force acting upon that body, and the acceleration will be directly proportional to the net force and inversely proportional to the mass of the body. Acceleration refers either to an increase or decrease in velocity, although deceleration is commonly used to indicate a decrease. This law governs the aircraft’s ability to change flightpath and speed, which are controlled by attitude (both pitch and bank) and thrust inputs. Speeding up, slowing down, entering climbs or descents, and turning are examples of accelerations that the pilot controls in everyday flight. [Figure 4]

Aerodynamics factor
Figure 4. Newton’s Second Law of Motion: the Law of Momentum

Newton’s Third Law, the Law of Reaction

Newton’s Third Law of Motion is the Law of Reaction, which states that for every action there is an equal and opposite reaction. As shown in Figure 5, the action of the jet engine’s thrust or the pull of the propeller lead to the reaction of the aircraft’s forward motion. This law is also responsible for a portion of the lift that is produced by a wing, from the downward deflection of the airflow around it. This downward force of the relative wind results in an equal but opposite (upward) lifting force created by the airflow over the wing. [Figure 5]

Aerodynamics factor
Figure 5. Newton’s Third Law of Motion: the Law of Reaction