Any force applied to an aircraft to deflect its flight from a straight line produces a stress on its structure; the amount of this force is termed load factor. A load factor is the ratio of the aerodynamic force on the aircraft to the gross weight of the aircraft (e.g., lift/weight). For example, a load factor of 3 means the total load on an aircraft’s structure is three times its gross weight. When designing an aircraft, it is necessary to determine the highest load factors that can be expected in normal operation under various operational situations. These “highest” load factors are called “limit load factors.”

Aircraft are placed in various categories (i.e., normal, utility, and acrobatic) depending upon the load factors they are designed to take. For reasons of safety, the aircraft must be designed to withstand certain maximum load factors without any structural damage.

The specified load may be expected in terms of aerodynamic forces, as in turns. In level flight in undisturbed air, the wings are supporting not only the weight of the aircraft, but centrifugal force as well. As the bank steepens, the horizontal lift component increases, centrifugal force increases, and the load factor increases. If the load factor becomes so great that an increase in AOA cannot provide enough lift to support the load, the wing stalls. Since the stalling speed increases directly with the square root of the load factor, the pilot should be aware of the flight conditions during which the load factor can become critical. Steep turns at slow airspeed, structural ice accumulation, and vertical gusts in turbulent air can increase the load factor to a critical level.