Some helicopters incorporate a stability augmentation system (SAS) to help stabilize the helicopter in flight and in a hover. The original purpose and design allowed decreased pilot work load and lessened fatigue. It allowed pilots to place an aircraft at a set attitude to accomplish other tasks or simply stabilize the aircraft for long cross-country flights.

Force Trim

Force trim was a passive system that simply held the cyclic in a position that gave a control force to transitioning airplane pilots who had become accustomed to such control forces. The system uses a magnetic clutch and springs to hold the cyclic control in the position where it was released. The system does not use sensor-based data to make corrections, but rather is used by the pilot to “hold” the cyclic in a desired position. The most basic versions only applies to the cyclic requiring the pilot to continue power and tail rotor inputs. With the force trim on or in use, the pilot can override the system by disengaging the system through the use of a force trim release button or, with greater resistance, can physically manipulate the controls. Some recent basic systems are referred to as attitude retention systems.

Active Augmentation Systems

Actual systems use electric actuators that provide input to the hydraulic servos. These servos receive control commands from a computer that senses external environmental inputs, such as wind and turbulence. SAS complexity varies by manufacturer, but can be as sophisticated as providing three axis stability. That is, computer based inputs adjust attitude, power and aircraft trim for a more stabilized flight.

Once engaged by the pilot, these systems use a multitude of sensors from stabilized gyros to electro-mechanical actuators that provide instantaneous inputs to all flight controls without pilot assistance. As with any other SAS, it may be overridden or disconnected by the pilot at any time. Helicopters with complex Automatic Flight Control Systems (AFCS) and autopilots normally have a trim switch referred to as “beeper trim” or a “coolie hat.” This switch is used when minor changes to the trim setting are desired.

Stability augmentation systems reduce pilot workload by improving basic aircraft control harmony and decreasing disturbances. These systems are very useful when the pilot is required to perform other duties, such as sling loading and search-and-rescue operations. Other inputs such as heading, speed, altitude, and navigation information may be supplied to the computer to form a complete autopilot system.

Autopilot

Helicopter autopilot systems are similar to stability augmentation systems, but they have additional features. An autopilot can actually fly the helicopter and perform certain functions selected by the pilot. These functions depend on the type of autopilot and systems installed in the helicopter.

The most common functions are altitude and heading hold. Some more advanced systems include a vertical speed or indicated airspeed (IAS) hold mode, where a constant rate of climb/descent or IAS is maintained by the autopilot. Some autopilots have navigation capabilities, such as very high frequency (VHF) OmniRange Navigation System (VOR), Instrument Landing System (ILS), and global positioning system (GPS) intercept and tracking, which is especially useful in instrument flight rules (IFR) conditions. This is referred to as a coupled system. An additional component, called a flight director (FD), may also be installed. The FD provides visual guidance cues to the pilot to fly selected lateral and vertical modes of operation. The most advanced autopilots can fly an instrument approach to a hover without any additional pilot input once the initial functions have been selected.

The autopilot system consists of electric actuators or servos connected to the flight controls. The number and location of these servos depends on the type of system installed. A twoaxis autopilot controls the helicopter in pitch and roll; one servo controls fore and aft cyclic, and another controls left and right cyclic. A three-axis autopilot has an additional servo connected to the antitorque pedals and controls the helicopter in yaw. A four-axis system uses a fourth servo which controls the collective. These servos move the respective flight controls when they receive control commands from a central computer. This computer receives data input from the flight instruments for attitude reference and from the navigation equipment for navigation and tracking reference. An autopilot has a control panel in the cockpit that allows the pilot to select the desired functions, as well as engage the autopilot.

For safety purposes, an automatic disengagement feature is usually included which automatically disconnects the autopilot in heavy turbulence or when extreme flight attitudes are reached. Even though all autopilots can be overridden by the pilot, there is also an autopilot disengagement button located on the cyclic or collective which allows pilots to completely disengage the autopilot without removing their hands from the controls. Because autopilot systems and installations differ from one helicopter to another, it is very important to refer to the autopilot operating procedures located in the RFM.

Environmental Systems

Heating and cooling the helicopter cabin can be accomplished in different ways. The simplest form of cooling is by ram air. Air ducts in the front or sides of the helicopter are opened or closed by the pilot to let ram air into the cabin. This system is limited as it requires forward airspeed to provide airflow and also depends on the temperature of the outside air. Air conditioning provides better cooling but it is more complex and weighs more than a ram air system.

One of the simplest methods of cooling a helicopter is to remove the doors allowing air to flow through the cockpit and engine compartments. Care must be taken to properly store the doors whether in a designed door holding rack in a hangar or if it is necessary to carry them in the helicopter. When storing the doors, care must be taken to not scratch the windows. Special attention should be paid to ensuring that all seat belt cushions and any other loose items are stored away to prevent ingestion into the main or tail rotor. When reattaching the doors, proper care must be taken to ensure that they are fully secured and closed.

Air conditioners or heat exchanges can be fitted to the helicopter as well. They operate by drawing bleed air from the compressor, passing it through the heart exchanger and then releasing it into the cabin. As the compressed air is released, the expansion absorbs heat and cools the cabin. The disadvantage of this type of system is that power is required to compress the air or gas for the cooling function, thus robbing the engine of some of its capability. Some systems are restricted from use during takeoff and landings.

Piston-powered helicopters use a heat exchanger shroud around the exhaust manifold to provide cabin heat. Outside air is piped to the shroud and the hot exhaust manifold heats the air, which is then blown into the cockpit. This warm air is heated by the exhaust manifold but is not exhaust gas. Turbine helicopters use a bleed air system for heat. Bleed air is hot, compressed, discharge air from the engine compressor. Hot air is ducted from the compressor to the bleed air heater assembly where it is combined with ambient air through and induction port mounted to the fuselage. The amount of heat delivered to the helicopter cabin is regulated by a pilot controlled bleed air mixing valve.