Understanding the capabilities and limitations of the navigation systems installed in an aircraft is one of the pilot’s biggest concerns for IFR flight. Considering the vast number of RNAV systems and pilot interfaces available today, it is critical that pilots and flight crews be familiar with the manufacturer’s operating manual for each RNAV system they operate and achieve and retain proficiency operating those systems in the IFR environment.

Most professional and general aviation pilots are familiar with the possible human factors issues related to flightdeck automation. It is particularly important to consider those issues when using airborne navigation databases. Although modern avionics can provide precise guidance throughout all phases of flight, including complex departures and arrivals, not all systems have the same capabilities.

RNAV equipment installed in some aircraft is limited to direct route point-to-point navigation. Therefore, it is very important for pilots to familiarize themselves with the capabilities of their systems through review of the manufacturer documentation. Most modern RNAV systems are contained within an integrated avionics system that receives input from several different navigation and aircraft system sensors. These integrated systems provide so much information that pilots may sometimes fail to recognize errors in navigation caused by database discrepancies or misuse. Pilots must constantly ensure that the data they enter into their avionics is accurate and current. Once the transition to RNAV is made during a flight, pilots and flight crews must always be capable and ready to revert to conventional means of navigation if problems arise.

Closed Indefinitely Airports

Some U.S. airports have been closed for up to several years, with little or no chance that they will ever reopen; yet their “indefinite” closure status – as opposed to permanent or UFN closure, or abandonment – causes them to continue to appear on both VFR and IFR charts and in airborne navigation databases; and their instrument approach procedures, if any, continue to be included – and still appear to be valid – in the paper and electronic versions of the United States Terminal Procedures Publication (TPP) charts. Airpark South, 2K2, at Ozark, Missouri, is a case in point.

Even though this airport has been closed going on two years and, due to industrial and residential development surrounding it, likely will never be reopened, the airport is nonetheless still charted in a way that could easily lead a pilot to believe that it is still open and operating. Even the current U.S. Low Altitude En route chart displays a blue symbol for this airport, indicating that it still has a Department of Defense (DOD) approved instrument approach procedure available for use.

Aircrews need to use caution when selecting an airport in a cautionary or emergency situation, especially if the airport was not previously analyzed suitable for diversion during preflight. Aircrews could assume, based on charts and their FMS database, the airport is suitable and perhaps the only available diversionary or emergency option. The airport however, could be closed and hazardous even for emergency use. In these situations, Air Traffic Control may be queried for the airport’s status.

Storage Limitations

As the data in a worldwide database grows, the required data storage space increases. Over the years that panel- mounted GPS and FMSs have developed, the size of the commercially available airborne navigation databases has grown exponentially.

Some manufacturer’s systems have kept up with this growth and some have not. Many of the limitations of older RNAV systems are a direct result of limited data storage capacity. For this reason, avionics manufacturers must make decisions regarding which types of procedures will be included with their system. For instance, older GPS units rarely include all of the waypoints that are coded into master databases. Even some modern FMS equipment, which typically have much larger storage capacity, do not include all of the data that is available from the database producers. The manufacturers often choose not to include certain types of data that they think is of low importance to the usability of the unit. For example, manufacturers of FMS used in large airplanes may elect not to include airports where the longest runway is less than 3,000 feet or to include all the procedures for an airport.

Manufacturers of RNAV equipment can reduce the size of the data storage required in their avionics by limiting the geographic area the database covers. Like paper charts, the amount of data that needs to be carried with the aircraft is directly related to the size of the coverage area. Depending on the data storage that is available, this means that the larger the required coverage area, the less detailed the database can be.

Again, due to the wide range of possible storage capacities, and the number of different manufacturers and product lines, the manufacturer’s documentation is the pilot’s best source of information regarding limitations caused by storage capacity of RNAV avionics.

Charting/Database Inconsistencies

It is important for pilots to remember that many inconsistencies may exist between aeronautical charts and airborne navigation databases. Since there are so many sources of information included in the production of these materials, and the data is manipulated by several different organizations before it is eventually displayed on RNAV equipment, the possibility is high that there will be noticeable differences between the charts and the databases. Because of this, pilots must be familiar with the capabilities of the database and have updated aeronautical charts while flying to ensure the proper course is being flown.

Naming Conventions

Obvious differences exist between the names of procedures shown on charts and those that appear on the displays of many RNAV systems. Most of these differences can be accounted for simply by the way the avionics manufacturers elect to display the information to the pilot. It is the avionics manufacturer that creates the interface between the pilot and the database. For example, the VOR 12R approach in San Jose, California, might be displayed several different ways depending on how the manufacturer designs the pilot interface. Some systems display procedure names exactly as they are charted, but many do not.

The naming of multiple approaches of the same type to the same runway is also changing. Multiple approaches with the same guidance will be annotated with an alphabetical suffix beginning at the end of the alphabet and working backwards for subsequent procedures (e.g., ILS Z RWY 28, ILS Y RWY 28, etc.). The existing annotations, such as ILS 2 RWY 28 or Silver ILS RWY 28, will be phased out and replaced with the new designation.

NAVAIDs are also subject to naming discrepancies as well. This problem is complicated by the fact that multiple NAVAIDs can be designated with the same identifier. VOR XYZ may occur several times in a provider’s database, so the avionics manufacturer must design a way to identify these fixes by a more specific means than the three-letter identifier. Selection of geographic region is used in most instances to narrow the pilot’s selection of NAVAIDs with like identifiers.

Non-directional beacons (NDBs) and locator outer markers (LOMs) can be displayed differently than they are charted. When the first airborne navigation databases were being implemented, NDBs were included in the database as waypoints instead of NAVAIDs. This necessitated the use of five character identifiers for NDBs. Eventually, the NDBs were coded into the database as NAVAIDs, but many of the RNAV systems in use today continue to use the five-character identifier. These systems display the characters “NB” after the charted NDB identifier. Therefore, NDB ABC would be displayed as “ABCNB.”

Other systems refer to NDB NAVAIDs using either the NDB’s charted name if it is five or fewer letters, or the one to three character identifier. PENDY NDB located in North Carolina, for instance, is displayed on some systems as “PENDY,” while other systems might only display the NDBs identifier “ACZ.” [Figure]

Operational Limitations of Airborne Navigation Databases
Manufacturer’s naming conventions
Using the VOR/DME Runway 34 approach at Eugene Mahlon Sweet Airport (KEUG) in Eugene, Oregon, as another example, which is named V34, may be displayed differently by another avionics platform. For example, a GPS produced by one manufacturer might display the approach as VOR 34, whereas another might refer to the approach as VOR/DME 34, and an FMS produced by another manufacturer may refer to it as VOR34. These differences can cause visual inconsistencies between chart and GPS displays, as well as confusion with approach clearances and other ATC instructions for pilots unfamiliar with specific manufacturer’s naming conventions.For detailed operational guidance, refer to Advisory Circular (AC) 90-100, U.S. Terminal and En Route Area Navigation (RNAV) Operations; AC 90-101, Approval Guidance for Required Navigation Performance (RNP) Procedures with Authorization Required (AR); AC 90-105, Approval guidance for RNP Operations and Barometic Vertical Navigation in the U.S. National Airspace System and in Oceanic and Remote Continental Airspace; and AC 90-107, Guidance for Localizer Performance with Vertical Guidance and Localizer Performance without Vertical Guidance Approach Operations in the U.S. National Airspace System.

Issues Related To Magnetic Variation

Magnetic variations for locations coded into airborne navigation databases can be acquired in several ways. In many cases they are supplied by government agencies in the epoch year variation format. Theoretically, this value is determined by government sources and published for public use every five years. Providers of airborne navigation databases do not use annual drift values; instead the database uses the epoch year variation until it is updated by the appropriate source provider. In the United States, this is the National Oceanic and Atmospheric Administration (NOAA). In some cases the variation for a given location is a value that has been calculated by the avionics system. These dynamic magnetic variation values can be different than those used for locations during aeronautical charting and must not be used for conventional NAVAIDs or airports.

Discrepancies can occur for many reasons. Even when the variation values from the database are used, the resulting calculated course might be different from the course depicted on the charts. Using the magnetic variation for the region instead of the actual station declination can result in differences between charted and calculated courses and incorrect ground track. Station declination is only updated when a NAVAID is site checked by the governing authority that controls it, so it is often different than the current magnetic variation for that location. Using an onboard means of determining variation usually entails coding some sort of earth model into the avionics memory. Since magnetic variation for a given location changes predictably over time, this model may only be correct for one time in the lifecycle of the avionics. This means that if the intended lifecycle of a GPS unit were 20 years, the point at which the variation model might be correct would be when the GPS unit was 10 years old. The discrepancy would be greatest when the unit was new, and again near the end of its life span.

Another issue that can cause slight differences between charted course values and those in the database occurs when a terminal procedure is coded using magnetic variation of record. When approaches or other procedures are designed, the designers use specific rules to apply variation to a given procedure. Some controlling government agencies may elect to use the epoch year variation of an airport to define entire procedures at that airport. This may result in course discrepancies between the charted value and the value calculated using the actual variations from the database.

Issues Related To Revision Cycle

Pilots should be aware that the length of the airborne navigation database revision cycle could cause discrepancies between aeronautical charts and information derived from the database. One important difference between aeronautical charts and databases is the length of cutoff time. Cutoff refers to the length of time between the last day that changes can be made in the revision, and the date the information becomes effective. Aeronautical charts typically have a cutoff date of 10 days prior to the effective date of the charts.