Ground reference maneuvers may be used as training exercises to help develop a division of attention between the flightpath and ground references, and while controlling the helicopter and watching for other aircraft in the vicinity. Other examples of ground reference maneuvers are flights for photographic or observation purposes, such as pipe line or power line checks. Prior to each maneuver, a clearing turn should be accomplished to ensure the area is free of conflicting traffic.
Rectangular Course
The rectangular course is a training maneuver in which the ground track of the helicopter is equidistant from all sides of a selected rectangular area on the ground. While performing the maneuver, the altitude and airspeed should be held constant. The rectangular course helps develop recognition of a drift toward or away from a line parallel to the intended ground track. This is helpful in recognizing drift toward or from an airport runway during the various legs of the airport traffic pattern, and is also useful in observation and photographic flights.
Technique
Maintaining ground track while trying to fly a straight line can be very difficult for new pilots to do. It is important to understand the effects of the wind and how to compensate for this. For this maneuver, pick a square or rectangular field, or an area bounded on four sides by section lines or roads, with sides approximately a mile in length. The area selected should be well away from other air traffic. Fly the maneuver approximately 500 to 800 feet above the ground, which is the altitude usually required for an airport traffic pattern. If the student finds it difficult to maintain a proper ground track at that higher altitude, lower the altitude for better ground reference until they feel more comfortable and are able to grasp the concept better. Altitude can be varied up to 800 feet as proficiency improves.
Fly the helicopter parallel to and at a uniform distance, about one-fourth to one-half mile, from the field boundaries, and not directly above the boundaries. For best results, position flightpath outside the field boundaries just far enough away that they may be easily observed from either pilot seat by looking out the side of the helicopter. If an attempt is made to fly directly above the edges of the field, there will be no usable reference points to start and complete the turns. In addition, the closer the track of the helicopter is to the field boundaries, the steeper the bank necessary at the turning points. The edges of the selected field should be seen while seated in a normal position and looking out the side of the helicopter during either a left-hand or right-hand course. The distance of the ground track from the edges of the field should be the same regardless of whether the course is flown to the left or right. All turns should be started when the helicopter is abeam the corners of the field boundaries. The bank normally should not exceed 30°–45° in light winds. Strong winds may require more bank.
The pilot should understand that when trying to fly a straight line and maintain a specific heading, aircraft heading must be adjusted in order to compensate for the winds and stay on the proper ground track. Also, keep in mind that a constant scan of flight instruments and outside references aid in maintaining proper ground track.
Although the rectangular course may be entered from any direction, this discussion assumes entry on a downwind heading. [Figure 1] while approaching the field boundary on the downwind leg, begin planning for an upcoming turn. Since there is a tailwind on the downwind leg, the helicopter’s groundspeed is increased (position 1). During the turn, the wind causes the helicopter to drift away from the field. To counteract this effect, the roll-in should be made at a fairly fast rate with a relatively steep bank (position 2). This is normally the steepest turn of the maneuver.
Figure 1. Example of a rectangular course |
As the turn progresses, the tailwind component decreases, which decreases the groundspeed. Consequently, the bank angle and rate-of-turn must be reduced gradually to ensure that upon completion of the turn, the crosswind ground track continues to be the same distance from the edge of the field. Upon completion of the turn, the helicopter should be level and crabbed into the wind in order to maintain the proper ground track. Keep in mind that in order to maintain proper ground track the helicopter may have to be flown almost sideways depending on the amount of wind. The forward cyclic that is applied for airspeed will be in the direction of the intended flight path. For this example, it will be in the direction of the downwind corner of the field. However, since the wind is now pushing the helicopter away from the field, establish the proper drift correction by heading slightly into the wind. Therefore, the turn should be greater than a 90° change in heading (position 3). If the turn has been made properly, the field boundary again appears to be one-fourth to one-half mile away. While on the crosswind leg, the wind correction should be adjusted, as necessary, to maintain a uniform distance from the field boundary (position 4).
As the next field boundary is being approached (position 5), plan for the next turn. Since a wind correction angle is being held into the wind and toward the field, this next turn requires a turn of less than 90°. Since there is now a headwind, the groundspeed decreases during the turn, the bank initially must be medium and progressively decrease as the turn proceeds. To complete the turn, time the rollout so that the helicopter becomes level at a point aligned with the corner of the field just as the longitudinal axis of the helicopter again becomes parallel to the field boundary (position 6). The distance from the field boundary should be the same as on the other sides of the field.
Continue to evaluate each turn and determine the steepness or shallowness based on the winds. It is also important to remember that as the bank angles are adjusted in the turn, the pilot is subsequently forced to make changes with the flight controls.
Common Errors
- Faulty entry technique.
- Poor planning, orientation, and/or division of attention.
- Uncoordinated flight control application.
- Improper correction for wind drift.
- Failure to maintain selected altitude and airspeed.
- Selection of a ground reference with no suitable emergency landing area within gliding distance.
- Not flying a course parallel to the intended area (e.g., traffic pattern or square field).
S-Turns
Another training maneuver to use is the S-turn, which helps correct for wind drift in turns. This maneuver requires turns to the left and right.
Technique
The pilot can choose to use a road, a fence, or a railroad for a reference line. Regardless of what is used, it should be straight for a considerable distance and should extend as nearly perpendicular to the wind as possible. The object of S-turns is to fly a pattern of two half circles of equal size on opposite sides of the reference line. [Figure 2] The maneuver should be performed at a constant altitude between 500 and 800 feet above the terrain. As mentioned previously, if the student pilot is having a difficult time maintaining the proper altitude and airspeed, have him or her attempt the S-turn at a lower altitude, providing better ground reference. The discussion that follows is based on choosing a reference line perpendicular to the wind and starting the maneuver with the helicopter facing downwind.
Figure 2. S-turns across a road |
As the helicopter crosses the reference line, immediately establish a bank. This initial bank is the steepest used throughout the maneuver since the helicopter is headed directly downwind and the groundspeed is greatest (position 1). Gradually reduce the bank, as necessary, to describe a ground track of a half circle. Time the turn so that, as the rollout is completed, the helicopter is crossing the reference line perpendicular to it and heading directly upwind (position 2). Immediately enter a bank in the opposite direction to begin the second half of the “S” (position 3). Since the helicopter is now on an upwind heading, this bank (and the one just completed before crossing the reference line) is the shallowest in the maneuver. Gradually increase the bank, as necessary, to describe a ground track that is a half circle identical in size to the one previously completed on the other side of the reference line (position 4). The steepest bank in this turn should be attained just prior to rollout when the helicopter is approaching the reference line nearest the downwind heading. Time the turn so that as the rollout is complete, the helicopter is perpendicular to the reference line and is again heading directly downwind (position 5).
In summary, the angle of bank required at any given point in the maneuver is dependent on the groundspeed. The faster the groundspeed is, the steeper the bank is; the slower the groundspeed is, the shallower the bank is. To express it another way, the more nearly the helicopter is to a downwind heading, the steeper the bank; the more nearly it is to an upwind heading, the shallower the bank. In addition to varying the angle of bank to correct for drift in order to maintain the proper radius of turn, the helicopter must also be flown with a drift correction angle (crab) in relation to its ground track; except, of course, when it is on direct upwind or downwind headings or there is no wind.
One would normally think of the fore and aft axis of the helicopter as being tangent to the ground track pattern at each point. However, this is not the case. During the turn on the upwind side of the reference line (side from which the wind is blowing), crab the nose of the helicopter toward the outside of the circle. During the turn on the downwind side of the reference line (side of the reference line opposite to the direction from which the wind is blowing), crab the nose of the helicopter toward the inside of the circle. In either case, it is obvious that the helicopter is being crabbed into the wind just as it is when trying to maintain a straight ground track. The amount of crab depends on the wind velocity and how close the helicopter is to a crosswind position. The stronger the wind is, the greater the crab angle is at any given position for a turn of a given radius. The more nearly the helicopter is to a crosswind position, the greater the crab angle. The maximum crab angle should be at the point of each half circle farthest from the reference line.
A standard radius for S-turns cannot be specified, since the radius depends on the airspeed of the helicopter, the velocity of the wind, and the initial bank chosen for entry. The only standard is crossing the ground reference line straight and level, and having equal radius semi-circles on both sides.
Common Errors
- Using antitorque pedal pressures to assist turns.
- Slipping or skidding in the turn.
- An unsymmetrical ground track during S-turns across a road.
- Improper correction for wind drift.
- Failure to maintain selected altitude or airspeed.
- Excessive bank angles.
Turns Around a Point
This training maneuver requires flying constant radius turns around a preselected point on the ground using a bank angle of approximately 30°–45°, while maintaining both a constant altitude and the same distance from the point throughout the maneuver. [Figure 3] The objective, as in other ground reference maneuvers, is to develop the ability to subconsciously control the helicopter while dividing attention between flightpath, how the winds are affecting the turn and ground references, and watching for other air traffic in the vicinity. This is also used in high reconnaissance, observation, and photography flight.
Figure 3. Turns around a point |
Technique
The factors and principles of drift correction that are involved in S-turns are also applicable to this maneuver. As in other ground track maneuvers, a constant radius around a point requires the pilot to change the angle of bank constantly and make numerous control changes to compensate for the wind. The closer the helicopter is to a direct downwind heading at which the groundspeed is greatest, the steeper the bank and the greater the rate of turn required to establish the proper wind correction angle. The closer the helicopter is to a direct upwind heading at which the groundspeed is least, the shallower the bank and the lower the rate of turn required to establish the proper wind correction angle. Therefore, throughout the maneuver, the bank and rate of turn must be varied gradually and in proportion to the groundspeed corrections made for the wind.
The point selected for turns should be prominent and easily distinguishable, yet small enough to present a precise reference. Isolated trees, crossroads, or other similar small landmarks are usually suitable. The point should be in an area away from communities, livestock, or groups of people on the ground to prevent possible annoyance or hazard to others. Additionally, the area should be clear and suitable for any emergency landings should they be required
Just as S-turns require that the helicopter be turned into the wind in addition to varying the bank, so do turns around a point. During the downwind half of the circle, the helicopter’s nose must be progressively turned toward the inside of the circle; during the upwind half, the nose must be progressively turned toward the outside. The downwind half of the turn around the point may be compared to the downwind side of the S-turn, while the upwind half of the turn around a point may be compared to the upwind side of the S-turn.
Upon gaining experience in performing turns around a point and developing a good understanding of the effects of wind drift and varying of the bank angle and wind correction angle as required, entry into the maneuver may be from any point. When entering this maneuver at any point, the radius of the turn must be carefully selected, taking into account the wind velocity and groundspeed so that an excessive bank is not required later to maintain the proper ground track.
S-Turn Common Errors
- Faulty entry technique.
- Poor planning, orientation, or division of attention.
- Uncoordinated flight control application.
- Improper correction for wind drift.
- Failure to maintain selected altitude or airspeed.
- Failure to maintain an equal distance around the point.
- Excessive bank angles.