Weather Considerations for an Instrument Approach

Weather conditions at the field of intended landing dictate whether flight crews need to plan for an instrument approach and, in many cases, determine which approaches can be used, or if an approach can even be attempted. The gathering of weather information should be one of the first steps taken during the approach-planning phase. Although there are many possible types of weather information, the primary concerns for approach decision-making are windspeed, wind direction, ceiling, visibility, altimeter setting, temperature, and field conditions. It is also a good idea to check NOTAMs at this time, in case there were any changes since preflight planning.

Windspeed and direction are factors because they often limit the type of approach that can be flown at a specific location. This typically is not a factor at airports with multiple precision approaches, but at airports with only a few or one approach procedure, the wrong combination of wind and visibility can make all instrument approaches at an airport unavailable. Pilots must be prepared to execute other available approaches, not just the one that they may have planned for. As an example, consider the available approaches at the Chippewa Valley Regional Airport (KEAU) in Eau Claire, Wisconsin. [Figure 1]

Weather Considerations for an Instrument Approach
Figure 1. Chippewa Regional Airport (KEAU), Eau Claire, Wisconsin
In the event that the visibility is reported as less than one mile, the only useable approaches for Category C aircraft is the Instrument Landing System (ILS) and Lateral navigation (LNAV)/vertical navigation (VNAV) to Runway 22. This leaves very few options for flight crews if the wind does not favor Runway 22; and, in cases where the wind restricts a landing on that runway altogether, even a circling approach cannot be flown because of the visibility.

Weather Sources

Most of the weather information that flight crews receive is issued to them prior to the start of each flight segment, but the weather used for in-flight planning and execution of an instrument approach is normally obtained en route via government sources, company frequency, or Aircraft Communications Addressing and Reporting System (ACARS).

Air carriers and operators certificated under the provisions of Part 119 (Certification: Air Carriers and Commercial Operators) are required to use the aeronautical weather information systems defined in the OpSpecs issued to that certificate holder by the FAA. These systems may use basic FAA/National Weather Service (NWS) weather services, contractor or operator-proprietary weather services, and/or Enhanced Weather Information System (EWINS) when approved in the OpSpecs. As an integral part of EWINS approval, the procedures for collecting, producing, and disseminating aeronautical weather information, as well as the crewmember and dispatcher training to support the use of system weather products, must be accepted or approved.

Operators not certificated under the provisions of 14 CFR Part 119 are encouraged to use FAA/NWS products through the Flight Service Stations (FSS). FSS provide pilot weather briefings, en route weather, receive and process instrument flight rule (IFR) and visual flight rule (VFR) flight plans, relay air traffic control (ATC) clearances, and issue NOTAMs. They also provide assistance to lost aircraft and aircraft in emergency situations and conduct VFR search and rescue services.

Direct User Access Terminal System (DUATS), funded by the FAA, allows any pilot to access weather information and file a flight plan via computer. Two contract vendors currently provide information services within the DUATS system, and can be accessed via the Internet at www.duats.com or www.1800wxbrief.com. The current vendors of DUATS II service and the associated phone numbers are listed in Chapter 7 of the Aeronautical Information Manual (AIM).

Flight Information Service—Broadcast (FIS-B) provides certain aviation weather and other aeronautical information to aircraft equipped with an appropriate flight deck display. Reception of FIS-B services can be expected within a ground station coverage volume when line-of-sight geometry is maintained between the aircraft and ground station. National Airspace System (NAS) wide service availability was targeted for 2013 and is currently available within certain regions. FIS-B provides the following textual and graphical aviation weather and aeronautical products free-of-charge. A detailed description of these products can be found in the AIM.

  • Aviation Digital Data Services (ADDS) provides the aviation community with text, digital and graphical forecasts, analyses, and observations of aviation related weather variables. ADDS is a joint effort of National Oceanic and Atmospheric Administration’s (NOAA) Earth System Research Laboratory, National Center for Atmospheric Research (NCAR) Research Applications Laboratory (RAL), and the Aviation Weather Center (AWC).
  • Hazardous In-flight Weather Advisory Service (HIWAS) is a national program for broadcasting hazardous weather information continuously over selected navigation aids (NAVAIDs). The broadcasts include advisories such as Airman’s Meteorological Information (AIRMETs), Significant Meteorological Information (SIGMETs), convective SIGMETs, and urgent pilot weather reports (PIREPs/UUA). These broadcasts are only a summary of the information, and pilots should contact an FSS for detailed information.
  • Telephone Information Briefing Service (TIBS) is a service prepared and disseminated by Flight Service. It provides continuous telephone recordings of meteorological and aeronautical information. Specifically, TIBS provides area and route briefings, as well as airspace procedures and special announcements, if applicable. It is designed to be a preliminary briefing tool and is not intended to replace a standard briefing from a flight service specialist. The TIBS service is available 24 hours a day and is updated when conditions change, but it can only be accessed by a touch tone phone. The phone numbers for the TIBS service are listed in the Chart Supplement, formerly the Airport/Facility Directory (A/FD). TIBS should also contain, but is not limited to: surface observations, terminal aerodrome forecast (TAFs), and winds/temperatures aloft forecasts.

The suite of available aviation weather product types is expanding with the development of new sensor systems, algorithms, and forecast models. The FAA and NWS, supported by the NCAR and the NOAA Forecast Systems Laboratory (FSL), develop and implement new aviation weather product types through a comprehensive process known as the Aviation Weather Technology Transfer process. This process ensures that user needs and technical and operational readiness requirements are met as experimental product types mature to operational application.

The development of enhanced communications capabilities, most notably the internet, has allowed pilots access to an increasing range of weather service providers and proprietary products. It is not the intent of the FAA to limit operator use of this weather information. However, pilots and operators should be aware that weather services provided by entities other than the FAA, NWS, or their contractors (such as the DUATS and flight information services data link (FISDL) providers) may not meet FAA/ NWS quality control standards.

Broadcast Weather

The most common method used by flight crews to obtain specific in-flight weather information is to use a source that broadcasts weather for the specific airport. Information about ceilings, visibility, wind, temperature, barometric pressure, and field conditions can be obtained from most types of broadcast weather services. Broadcast weather can be transmitted to the aircraft in radio voice format or digital format, if it is available, via an ACARS system.

Automated Terminal Information Service (ATIS)

Automatic terminal information service (ATIS) is the continuous broadcast of recorded non-control information in selected high activity terminal areas. Its purpose is to improve controller effectiveness and to relieve frequency congestion by automating the repetitive transmission of essential but routine information. The information is continuously broadcast over a discrete very high frequency (VHF) radio frequency or the voice portion of a local NAVAID. ATIS transmissions on a discrete VHF radio frequency are engineered to be receivable to a maximum of 60 NM from the ATIS site and a maximum altitude of 25,000 feet above ground level (AGL). At most locations, ATIS signals may be received on the surface of the airport, but local conditions may limit the maximum ATIS reception distance and/or altitude. Pilots are urged to cooperate in the ATIS program as it relieves frequency congestion on approach control, ground control, and local control frequencies. The CS indicates airports for which ATIS is provided.

ATIS information includes the time of the latest weather sequence, ceiling, visibility, obstructions to visibility, temperature, dew point (if available), wind direction (magnetic), velocity, altimeter, other pertinent remarks, instrument approach and runway in use. The ceiling/sky condition, visibility, and obstructions to vision may be omitted from the ATIS broadcast if the ceiling is above 5,000 feet and the visibility is more than five miles. The departure runway will only be given if different from the landing runway except at locations having a separate ATIS for departure. The broadcast may include the appropriate frequency and instructions for VFR arrivals to make initial contact with approach control. Pilots of aircraft arriving or departing the terminal area can receive the continuous ATIS broadcast at times when flight deck duties are least pressing and listen to as many repeats as desired. ATIS broadcast will be updated upon the receipt of any official hourly and special weather. A new recording will also be made when there is a change in other pertinent data, such as runway change and instrument approach in use.

Automated Weather Observing Programs

Automated weather reporting systems are increasingly being installed at airports. These systems consist of various sensors, a processor, a computer-generated voice subsystem, and a transmitter to broadcast local, minuteby-minute weather data directly to the pilot.

Automated Weather Observing System

The automated weather observing system (AWOS) observations include the prefix “AUTO” to indicate that the data are derived from an automated system. Some AWOS locations are augmented by certified observers who provide weather and obstruction to vision information in the remarks of the report when the reported visibility is less than seven miles. These sites, along with the hours of augmentation, are published in the CS. Augmentation is identified in the observation as “OBSERVER WEATHER.” The AWOS wind speed, direction and gusts, temperature, dew point, and altimeter setting are exactly the same as for manual observations. The AWOS also reports density altitude when it exceeds the field elevation by more than 1,000 feet. The reported visibility is derived from a sensor near the touchdown of the primary instrument runway. The visibility sensor output is converted to a visibility value using a 10-minute harmonic average. The reported sky condition/ ceiling is derived from the ceilometer located next to the visibility sensor. The AWOS algorithm integrates the last 30 minutes of ceilometer data to derive cloud layers and heights. This output may also differ from the observer sky condition in that the AWOS is totally dependent upon the cloud advection over the sensor site.

Automated Surface Observing System (ASOS)/ Automated Weather Sensor System (AWSS)

The automated surface observing system (ASOS)/ automated weather sensor system (AWSS) is the primary surface weather observing system of the United States. The program to install and operate these systems throughout the United States is a joint effort of the NWS, the FAA, and the Department of Defense (DOD). AWSS is a follow-on program that provides identical data as ASOS. ASOS/AWSS is designed to support aviation operations and weather forecast activities. The ASOS/ AWSS provides continuous minute-by-minute observations and performs the basic observing functions necessary to generate a aviation routine weather report (METAR) and other aviation weather information. The information may be transmitted over a discrete VHF radio frequency or the voice portion of a local NAVAID. ASOS/AWSS transmissions on a discrete VHF radio frequency are engineered to be receivable to a maximum of 25 NM from the ASOS/AWSS site and a maximum altitude of 10,000 feet AGL.

At many locations, ASOS/AWSS signals may be received on the surface of the airport, but local conditions may limit the maximum reception distance and/or altitude. While the automated system and the human may differ in their methods of data collection and interpretation, both produce an observation quite similar in form and content. For the objective elements, such as pressure, ambient temperature, dew point temperature, wind, and precipitation accumulation, both the automated system and the observer use a fixed location and time-averaging technique. The quantitative differences between the observer and the automated observation of these elements are negligible. For the subjective elements; however, observers use a fixed time (spatial averaging technique) to describe the visual elements (sky condition, visibility, and present weather, etc.), while the automated systems use a fixed location and time averaging technique. Although this is a fundamental change, the manual and automated techniques yield remarkably similar results within the limits of their respective capabilities.

The use of the aforementioned visibility reports and weather services are not limited for Part 91 operators. Part 121 and 135 operators are bound by their individual OpSpecs documents and are required to use weather reports that come from the NWS or other approved sources. While all OpSpecs are individually tailored, most operators are required to use ATIS information, runway visual range (RVR) reports, and selected reports from automated weather stations. All reports coming from an AWOS-3 station are usable for Part 121 and 135 operators. Each type of automated station has different levels of approval as outlined in individual OpSpecs. Ceiling and visibility reports given by the tower with the departure information are always considered official weather, and RVR reports are typically the controlling visibility reference. Refer to Departures Procedures section, of this site, as well as the AIM section 7-1-12 for further description of automated weather systems.

Center Weather Advisories (CWA)

Center weather advisories (CWAs) are unscheduled inflight, flow control, air traffic, and aircrew advisories. By nature of its short lead time, the CWA is not a flight planning product. It is generally a nowcast for conditions beginning in the next two hours. CWAs will be issued:

  1. As a supplement to an existing SIGMET, convective SIGMET, or AIRMET.
  2. When an in-flight advisory has not been issued but observed or expected weather conditions meet SIGMET/AIRMET criteria based on current pilot reports and reinforced by other sources of information about existing meteorological conditions.
  3. When observed or developing weather conditions do not meet SIGMET, convective SIGMET, or AIRMET criteria (e.g., in terms of intensity or area coverage), but current pilot reports or other weather information sources indicate that existing or anticipated meteorological phenomena will adversely affect the safe and efficient flow of air traffic within the ARTCC area of responsibility.

Weather Regulatory Requirements

There are many practical reasons for reviewing weather information prior to initiating an instrument approach. Pilots must familiarize themselves with the condition of individual airports and runways so that they may make informed decisions regarding fuel management, diversions, and alternate planning. Because this information is critical, 14 CFR requires pilots to comply with specific weather minimums for planning and execution of instrument flights and approaches.

Weather Requirements and Part 91 Operators

According to 14 CFR Part 91, § 91.103, the pilot in command (PIC) must become familiar with all available information concerning a flight prior to departure. Included in this directive is the fundamental basis for pilots to review NOTAMs and pertinent weather reports and forecasts for the intended route of flight. This review should include current weather reports and terminal forecasts for all intended points of landing and alternate airports. In addition, a thorough review of an airport’s current weather conditions should always be conducted prior to initiating an instrument approach. Pilots should also consider weather information as a planning tool for fuel management.

For flight planning purposes, weather information must be reviewed in order to determine the necessity and suitability of alternate airports. For Part 91 operations, the 600-2 and 800-2 rule applies to airports with precision and non-precision approaches, respectively. Approaches with vertical guidance (APV) are non-precision approaches because they do not meet the International Civil Aviation Organization (ICAO) Annex 10 standards for a precision approach. Exceptions to the 600-2 and 800-2 alternate minimums are listed in the front of the Aeronautical Information Services in the Terminal Procedures Publication (TPP) and are indicated by a symbol [figure 2] on the approach charts for the airport. This does not preclude flight crews from initiating instrument approaches at alternate airports when the weather conditions are below these minimums. The 6002 and 800-2 rules, or any exceptions, only apply to flight planning purposes, while published landing minimums apply to the actual approach at the alternate.

Terminal Procedures Publication (TPP) and are indicated by a symbol
Figure 2

Weather Requirements and Part 135 Operators

Unlike Part 91 operators, Part 135 operators may not depart for a destination unless the forecast weather there will allow an instrument approach and landing. According to 14 CFR Part 135, § 135.219, flight crews and dispatchers may only designate an airport as a destination if the latest weather reports or forecasts, or any combination of them, indicate that the weather conditions will be at or above IFR landing minimums at the estimated time of arrival (ETA). This ensures that Part 135 flight crews consider weather forecasts when determining the suitability of destinations. Departures for airports can be made when the forecast weather shows the airport will be at or above IFR minimums at the ETA, even if current conditions indicate the airport to be below minimums. Conversely, 14 CFR Part 135, § 135.219 prevents departures when the first airport of intended landing is currently above IFR landing minimums, but the forecast weather is below those minimums at the ETA.

Another very important difference between Part 91 and Part 135 operations is the Part 135 requirement for airports of intended landing to meet specific weather criteria once the flight has been initiated. For Part 135, not only is the weather required to be forecast at or above instrument flight rules (IFR) landing minimums for planning a departure, but it also must be above minimums for initiation of an instrument approach and, once the approach is initiated, to begin the final approach segment of an approach. 14 CFR Part 135, § 135.225 states that pilots may not begin an instrument approach unless the latest weather report indicates that the weather conditions are at or above the authorized IFR landing minimums for that procedure. 14 CFR Part 135, § 135.225 provides relief from this rule if the aircraft has already passed the final approach fix (FAF) when the weather report is received. It should be noted that the controlling factor for determining whether or not the aircraft can proceed is reported visibility. RVR, if available, is the controlling visibility report for determining that the requirements of this section are met. The runway visibility value (RVV), reported in statute miles (SM), takes precedent over prevailing visibility. There is no required timeframe for receiving current weather prior to initiating the approach.

Weather Requirements and Part 121 Operators

Like Part 135 operators, flight crews and dispatchers operating under Part 121 must ensure that the appropriate weather reports or forecasts, or any combination thereof, indicate that the weather will be at or above the authorized minimums at the ETA at the airport to which the flight is dispatched (14 CFR Part 121, § 121.613). This regulation attempts to ensure that flight crews will always be able to execute an instrument approach at the destination airport. Of course, weather forecasts are occasionally inaccurate; therefore, a thorough review of current weather is required prior to conducting an approach. Like Part 135 operators, Part 121 operators are restricted from proceeding past the FAF of an instrument approach unless the appropriate IFR landing minimums exist for the procedure. In addition, descent below the minimum descent altitude (MDA), decision altitude (DA), or decision height (DH) is governed, with one exception, by the same rules that apply to Part 91 operators. The exception is that during Part 121 and 135 operations, the airplane is also required to land within the touchdown zone (TDZ). Refer to the section titled Minimum Descent Altitude, Decision Altitude, and Decision Height in the Altitudes post for more information regarding MDA, DA, and DH.

Scroll to Top