The instrument approach procedure (IAP) chart provides the method to descend and land safely in low visibility conditions. The FAA establishes an IAP after thorough analyses of obstructions, terrain features, and navigational facilities. Maneuvers, including altitude changes, course corrections, and other limitations, are prescribed in the IAP. The approach charts reflect the criteria associated with the United States Standard for Terminal Instrument Approach Procedures (TERPs), which prescribes standardized methods for use in designing instrument flight procedures.
In addition to the AeroNav Products, other governmental and corporate entities produce approach procedures. The U.S. Military IAPs are established and published by the Department of Defense and are available to the public upon request. Special IAPs are approved by the FAA for individual operators and are not available to the general public. Foreign country standard IAPs are established and published according to the individual country’s publication procedures. The information presented in the following sections highlight features of the United States TPP.
Figure 1. Instrument approach chart |
The instrument approach chart is divided into six main sections, which include the margin identification, pilot briefing (and notes), plan view, profile view, landing minimums, and airport diagram. [Figure 1] An examination of each section follows.
Margin Identification
- The final approach course alignment with the runway centerline exceeds 30º.
- The descent gradient is greater than 400 FPNM from the final approach fix (FAF) to the threshold crossing height (TCH). When this maximum gradient is exceeded, the circling-only approach procedure may be designed to meet the gradient criteria limits.
Further information on this topic can be found in the Instrument Procedures Handbook, Chapter 4, under Approach Naming Chart Conventions.
To distinguish between the left, right, and center runways, an “L,” “R,” or “C” follows the runway number (e.g., “ILS RWY 16R”). In some cases, an airport might have more than one circling approach, shown as VOR-A, VOR/DME-B, etc.
More than one navigational system separated by a slash indicates more than one type of equipment is required to execute the final approach (e.g., VOR/DME RWY 31). More than one navigational system separated by “or” indicates either type of equipment may be used to execute the final approach (e.g., VOR or GPS RWY 15). Multiple approaches of the same type, to the same runway and using the same guidance, have an additional letter from the end of the alphabet, number, or term in the title (e.g., ILS Z RWY 28, SILVER ILS RWY 28, or ILS 2 RWY 28). VOR/DME RNAV approaches are identified as VOR/DME RNAV RWY (runway number). Helicopters have special IAPs designated with COPTER in the procedure identification (e.g., COPTER LOC/DME 25L). Other types of navigation systems may be required to execute other portions of the approach prior to intercepting the final approach segment or during the missed approach.
The Pilot Briefing
Image – a |
When a triangle containing an “A” (see Image – b) appears in the notes section, it signifies the airport has nonstandard IFR alternate minimums. Civil pilots should refer to the Alternate Minimums Section of the TPP to determine alternate minimums. Military pilots should refer to appropriate regulations.
Image – b |
When a triangle containing an “A” NA (see Image – c) appears in the notes area, it signifies that Alternate Minimums are Not Authorized due to unmonitored facility or the absence of weather reporting service.
Image – c |
Communication frequencies are listed in the order in which they would be used during the approach. Frequencies for weather and related facilities are included, where applicable, such as ATIS, ASOS, AWOS, and AFSSs.
The Plan View
Figure 2. IAP plan view and symbol legends |
Image – d |
The MSA circle appears in the plan view, except in approaches for which the Terminal Arrival Area (TAA) format is used or appropriate NAVAIDs (e.g., VOR or NDB) are unavailable. The MSA is provided for emergency purposes only and guarantees 1,000 feet obstruction clearance in the sector indicated with reference to the bearings in the circle. For conventional navigation systems, the MSA is normally based on the primary omnidirectional facility (NAVAID) on which the IAP is predicated. The MSA depiction on the approach chart contains the facility identifier of the NAVAID used to determine the MSA altitudes. For RNAV approaches, the MSA is based on the runway waypoint for straight-in approaches or the airport waypoint for circling approaches. For GPS approaches, the MSA center header is the missed approach waypoint. The MSL altitudes appear in boxes within the circle, which is typically a 25 NM radius unless otherwise indicated. The MSA circle header refers to the letter identifier of the NAVAID or waypoint that describes the center of the circle (see Image – e).
Image – e |
NAVAIDs necessary for the completion of the instrument procedure include the facility name, letter identifier, and Morse code sequence. They may also furnish the frequency, Morse code, and channel. A heavy-lined NAVAID box depicts the primary NAVAID used for the approach. An “I” in front of the NAVAID identifier (in Figure 2, “I-AVL”) listed in the NAVAID box indicates a localizer. The requirement for an ADF, DME, or RADAR in the approach is noted in the plan view.
Image – f |
Image – g |
Image – h |
The missed approach holding pattern track is represented with a thin, dashed line. When collocated, the missed approach holding pattern and procedure turn holding pattern are indicated as a solid, black line. Arrival holding patterns are depicted as thin, solid lines.