An emergency medical services (EMS) helicopter departed for a night flight to transport an 11-day-old infant patient from one hospital to another. No record was found indicating the pilot obtained a weather briefing before departure. The pilot had a choice of taking either a direct route that crossed a remote area of rugged mountainous terrain with maximum ground elevations of about 9,000 feet or a route that was about 10 minutes longer and followed an interstate highway with maximum ground elevations of about 6,000 feet. Radar data, which show about 4 minutes of the helicopter’s flight before coverage was lost due to mountainous terrain, are consistent with the flight following the direct route.
Helicopter heading straight for mountain |
Good instrument procedures include studying approach charts before leaving cruise altitude. Key fixes and airport elevation must be noted and associated with terrain and obstacles along the approach path. Pilots should have a good understanding of both approach and departure design criteria to understand fully the obstacle clearance margins built into them. Some pilots have the false belief that ATC provides obstacle clearance while en route off airways. The pilot is ultimately responsible for obstacle clearance.
Altitude error is another common cause of CFIT. Cases of altitude error involve disorientation with respect to the NAVAID, improper transition on approach, selecting the wrong NAVAID, or just plain lack of horizontal situational awareness. Today’s modern aircraft have sophisticated flight directors, autopilots, autothrottles, and flight management systems. These devices make significant contributions to the overall safety of flight, but they are only machines that follow instructions. They do whatever is asked of them, even if it is wrong. When commanded, they unerringly follow instructions—sometimes straight into the ground. The pilot must ensure that both vertical and horizontal modes are correct and engaged. Cross-check autopilots constantly.
When automated flight equipment is not available, great care must be taken to prepare properly for a night flight. SRM becomes more challenging under the cover of darkness and caution should be exercised when determining what artificial light source to use inside the aircraft. A light source that is too bright will blind the pilot from seeing outside obstacles or rising terrain. Certain colored lenses bleach out symbols and markings on a map. Conduct this planning on the ground, in a dark room if necessary, before the actual flight.
- Terrain familiarization is critical to safe visual operations at night. Use sectional charts or other topographic references to ensure the helicopter will safely clear terrain and obstructions all along the route.
- When planning a nighttime VFR flight, follow IFR practices, such as climbing on a known safe course until well above surrounding terrain. Choose a cruising altitude that provides terrain separation similar to IFR flights (2,000 feet above ground level in mountainous areas and 1,000 feet above the ground in other areas). Using this technique, known obstacles, such as towers, will be avoided.
- When receiving radar services, do not depend on ATC to warn of terrain hazards. Although controllers try to warn pilots if they notice a hazardous situation, they may not always recognize that a particular VFR aircraft is dangerously close to terrain.
- When ATC issues a heading with an instruction to “maintain VFR,” be aware that the heading may not provide adequate terrain clearance. If any doubt exists about your ability to avoid terrain and obstacles visually, advise ATC immediately and take action to reach a safe altitude.
- For improved night vision, the FAA recommends the use of supplemental oxygen for flights above 5,000 feet.
- Obtain as much information about areas in which you will be flying and the routes to by utilizing hazard maps and satellite imagery.
- Before flying at night to unfamiliar remote areas or areas with hazardous terrain, try to arrange a day flight for familiarization.
- If a pilot flies at night, especially in remote or unlit areas, consider whether a global positioning system (GPS)-based terrain awareness unit would improve the safety of the flight.
Of particular note in the 2008 safety alert is a comment regarding oxygen use above 5,000 feet. Most helicopters are neither required nor equipped for supplemental oxygen use at this altitude. Due to the physiological importance of oxygen in night vision, care should be taken to exercise light discipline. Interior lighting should be lowered to the lowest possible levels, but must allow adequate illumination of necessary systems and instruments. This, in turn, allows greater recognition of outside obstacles and terrain features.
Limited outside visibility is one constant in CFIT accidents. In the accident cited at the beginning of this section, it appears the pilot failed to obtain a weather briefing. If the pilot had obtained one, he would probably have learned of the cloud cover and light precipitation present along his planned route of flight. The limited outside visibility probably caused the CFIT accident since no evidence was found of any pre-impact mechanical discrepancies with the helicopter’s airframe or systems that would have prevented normal operation.